shows a connection 2903, which forms a connection between a common ITO layer described below and xVcom 2621 through connection point 2623 and a connection 3001 shown in FIG. 30.

[0147] FIG. 31 shows a second layer of transparent conductor, such as ITO, formed on pixel 2501 and pixel 2502. The second layer on pixel 2502 forms a common electrode 3151, which includes a connection point 3153 that connects to xVcom 2621 through connections 3001 and 2903, and connection point 2623. FIG. 31 also shows a portion 3155 of a common electrode of a pixel adjacent in the y-direction. Like pixel 2502, pixel 2501 includes a common electrode 3101 formed of the second layer of transparent conductor. Likewise, common electrode 3101 includes a connection point 3103 that connects to xVcom 2621 through connections 3001 and 2903, and connection point 2623. However, pixel 2501 also includes a connection 3107 between common electrode 3101 and a common electrode 3105 of a pixel adjacent in the y-direction. In this way, the common electrodes of pixels can be connected in the y-direction to form a yVcom line 3109. Because common electrode 3101 is connected to xVcom 2621 and xVcom 2621 is connected to common electrodes of other pixels in the x-direction, the common electrodes of a region of pixels can be connected together to form a touch sensing element. Similar to the previous example embodiment, breaks in xVcom lines and yVcom lines can create separate regions of linked-together common electrodes that can be formed as an array of touch sensors.

[0148] FIG. 32 shows a plan view of completed pixels 2501 and 2502. FIG. 33 illustrates a side view of pixel 2501 taken along the lines shown in the top view shown in the figure.

[0149] FIG. 34 illustrates the storage capacitance of a pixel 2501 and a pixel 2502.

[0150] FIGS. 35-43 are directed to another example IPS LCD display using LTPS. In the present example, a yVcom line is formed in an M2 layer (in comparison to the previous example IPS LCD display, in which a yVcom line is formed in a common ITO layer). An example process of manufacturing an IPS LCD display using LTPS with an M2 layer yVcom line according to embodiments of the invention will now be described with reference to FIGS. 35-41. The figures show various stages of processing of two pixels, a pixel 3501 and a pixel 3502, during the manufacture of the example IPS LCD display. The resulting pixels 3501 and 3502 form electrical circuits equivalent to pixels 101 and 102, respectively, of FIG. 1.

[0151] FIG. 35 shows the patterning of a layer of poly-Si of pixels 3501 and 3502. Semiconductor portions 3505, 3507, and 3509 form the active region of a TFT of pixel 3501, and serve as source, gate, and drain, respectively. Likewise, semiconductor portions 3506, 3508, and 3510 are the source, gate, and drain, respectively, of pixel 3502. FIG. 35 also shows that pixel 3501 has the width W' (in the x-direction) that is slightly greater than the width W of pixel 3502.

[0152] FIG. 36 shows a subsequent patterning step in the process of manufacturing pixels 3501 and 3502, in which a first metal layer (M1) of pixels 3501 and 3502 is formed. As shown in FIG. 36, the M1 layers of pixels 3501 and 3502 include gates 3605a and 3606a, portions 3613a and 3613b of a gate line 3613 (shown as dotted lines), and portions 3621a and 3621b of xVcom 3621. Portions 3621a and 3622a include connections points 3623 and 3624, respectively. Gate line 3613 and xVcom 3621 run through pixels that are adjacent in the x-direction.

[0153] FIG. 37 shows vias 3701, 3703, and 3705 formed in pixels 3501 for connections to portion 3505, portion 3509, and connection point 3623, respectively. Vias 3702, 3704, and 3706 formed in pixels 3502 for connections to portion 3506, portion 3510, and connection point 3624, respectively.

[0154] FIG. 38 shows patterning of a second metal layer (M2) of pixels 3501 and 3502. For pixel 3501, the M2 layer forms a portion 3817a of a color data line 3817 (shown as a dotted line in FIG. 38), which could carry red, green, or blue color data, for example. Portion 3817a includes a connection 3819 that connects to portion 3505 through via 3701. Pixel 3501 also includes a portion 3830a of a yVcom 3830 (shown as a dotted line), which includes a connection 3823 to connection point 3623 through via 3705. Thus, yVcom 3830 is connected to xVcom 3621. Pixel 3501 also includes a connection 3821 with portion 3509 through via 3703.

[0155] Because yVcom 3830 is connected to xVcom 3621 and xVcom 3621 is connected to common electrodes of other pixels in the x-direction, the common electrodes of a region of pixels can be connected together to form a touch sensing element. Similar to the previous example embodiment, breaks in xVcom lines and yVcom lines can create separate regions of linked-together common electrodes that can be formed as an array of touch sensors.

[0156] For pixel 3502, the M2 layer forms a portion 3818a of a color data line 3818 (shown as a dotted line in FIG. 38), which could carry red, green, or blue color data, for example. Portion 3818a includes a connection 3820 that connects to portion 3506 through via 3702. Pixel 3501 also includes a connection 3824 to connection point 3624 through via 3706, and a connection 3822 with portion 3510 through via 3704. [0157] FIG. 39 shows a first layer of transparent conductive material, such as ITO, formed on pixels 3501 and 3502. The

material, such as ITO, formed on pixels 3501 and 3502. The first transparent conductor layer includes pixel electrodes 3901 and 3905. FIG. 39 also shows connections 3903 and 3907, which form connections between a common ITO layer described below and xVcom 3621 through connection points 3623 and 3624 and connections 4001 and 4002, respectively, shown in FIG. 40.

[0158] FIG. 41 shows a second layer of transparent conductor, such as ITO, formed on pixel 3501 and pixel 3502. The second layer on pixel 3502 forms a common electrode 4107, which includes a connection point 4105 that connects to xVcom 3621 through connections 4002 and 3907, and connection point 3624. Like pixel 3502, pixel 3501 includes a common electrode 4101 formed of the second layer of transparent conductor. Likewise, common electrode 4101 includes a connection point 4103 that connects to xVcom 3621 through connections 4001 and 3903, and connection point 3623.

[0159] FIG. 42 shows a plan view of completed pixels 3501 and 3502. FIG. 43 illustrates a side view of pixel 3501 taken along the lines shown in the top view shown in the figure.

[0160] FIGS. 44-55 are directed to an example ECB LCD display using LTPS. Like the ECB LCD display using amorphous silicon (a-Si) (shown in FIGS. 11-24), the process of manufacturing the ECB LCD display using LTPS includes construction of vias and additional M2 lines to form yVcom lines that connect the storage capacitors of pixels in the y-direction.

[0161] An example process of manufacturing an ECB LCD display using LTPS according to embodiments of the invention will now be described with reference to FIGS. 44-50. FIG. 44 shows a semiconductor layer of poly-Si. FIG. 45